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Uniqueness of the Gaussian Quadrature for a Ball
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We construct a formula for numerical integration of functions over the unit ball
in Rd that uses n Radon projections of these functions and is exact for all algebraic
polynomials in Rd of degree 2n&1. This is the highest algebraic degree of precision
that could be achieved by an n term integration rule of this kind. We prove the
uniqueness of this quadrature. In particular, we present a quadrature formula for
a disk that is based on line integrals over n chords and integrates exactly all
bivariate polynomials of degree 2n&1. � 2000 Academic Press
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1. INTRODUCTION

There is a huge number of papers dealing with numerical integration of
multivariate functions. In particular, explicit quadrature formulae have
been produced for integration over simple domains 0 in the d-dimensional
Euclidian space Rd like a ball, sphere, cube, or simplex (see, for example,
[7, 11]). The integration rules are usually based on the evaluation of a finite
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number of linear functionals L1 , ..., Ln of a given class, as point values,
integrals over hyperplanes or spheres. One of the central trends in numeri-
cal integration is dealing with the construction and characterization of
quadrature formulae of preassigned type

|
0

fr :
n

k=1

ckLk ( f ) (1.1)

which have maximal algebraic degree of precision (abbreviated to ADP),
that is, which are exact for all algebraic polynomials in d variables of
degree as high as possible. The problem originates from Gauss [4] and his
remarkable quadrature formula

|
1

&1
f (x) dxr :

n

k=1

Ak f ({k),

which is exact for all univariate polynomials of degree 2n&1. The nodes
[{k]n

1 are situated at the zeros of the n th Legendre polynomial.
Formulae of the given form (1.1) are called Gaussian (or of Gaussian

type) if they have a maximal ADP with respect to the corresponding poly-
nomial space in Rd.

The extension of the Gauss' result to the multivariate case encounters
serious difficulties. Even in the simplest multivariate case, that of integra-
tion over plane domains 0, there are only a few results which give in a
closed form quadrature formulae of Gaussian type. Recently Xu in [13]
(see also [2]) showed that a certain formula for integration over the cube
in R2, based on point evaluations at a grid produced by the extremal
points of Tchebycheff polynomials of first kind Tn , is minimal. However,
the question of uniqueness of this quadrature formula is still open.

Another example, attributed to Lusternik and Kantorovich, comes from
Mysovskih's book [7] (see [3] for multiple node extensions of this for-
mula). It concerns integration over the disc D using integrals over n circles
centered at the origin. The quadrature is exact for all polynomials from
?4n&1 (R2). It can be easily seen that there is no other quadrature based on
n circles, co-centered at the origin, that has the same or higher ADP. But
the question of uniqueness of the Gaussian quadrature of this type which
uses any n circles contained in D is still open. Briefly, there is no result in
the theory of multivariate numerical integration that gives in explicit form
a Gaussian formula based on n pieces of information of a preassigned type
and completely characterizes the constructed formula. The problem of
uniqueness of the extremal formula is the most difficult part in such a
characterization. Usually the uniqueness problem is reduced to the study of
multivariate polynomials obeying orthogonal properties of a specific kind.
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The aim of this paper is to give such an example of a multivariate Gaussian
formula.

We extend the results from [1], where we studied quadrature formulae
for the unit disc

D :=[(x, y): x2+ y2�1],

which are based on integrals over n chords. In the present paper we prove
that there is a unique (up to rotation) quadrature formula of this kind
which has a maximal ADP with respect to the space of bivariate polyno-
mials. Moreover, we characterize completely the extremal chords by the
zeros of a certain orthogonal polynomial. In this sense, the constructed
formula can be viewed as a bivariate analogue of the Gauss formula.

Let us describe the result more precisely. Given the parameters (tk , %k),
k=1, ..., n, we define the chords (see Fig. 1)

Ik :=I(tk , %k)=[(x, y): x cos %k+ y sin %k=tk] & D, k=1, ..., n.

The corresponding linear polynomial, associated with Ik , will be denoted
by lk , namely

lk=lk (x, y) :=x cos %k+ y sin %k&tk .

Everywhere in this paper the parameters %k are supposed to satisfy the
requirement %k # [0, ?). We study quadrature formulae of the form

||
D

f (x, y) dx dyr :
n

k=1

Ak |
Ik

f (x, y) ds (1.2)

which assign an approximate value to the double integral over D using a
given finite number of line integrals

|
Ik

f :=|
Ik

f (x, y) ds

:=|
- 1&t2

k

&- 1&t2
k

f (tk cos %k&s sin %k , tk sin %k+s cos %k) ds.

We consider the extremal problem of determining those coefficients [Ak]n
1

and node chords [Ik]n
1 , for which the corresponding quadrature (1.2)

integrates exactly all polynomials in two variables of degree as high as
possible. An application of (1.2) to the associated polynomial |2,
| :=l1 } } } ln , shows that its highest degree of precision is at most 2n&1.
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FIGURE 1

In [1] we proved the following. Let Un be the Tchebycheff polynomial
of second kind of degree n, that is,

Un (cos %) :=
sin(n+1) %
(n+1) sin %

.

Let '1 , ..., 'n be the zeros of Un ; 'k=cos(k?�(n+1)), k=1, ..., n.

Theorem A. The quadrature formula

||
D

f (x, y) dx dyr :
n

k=1

Ak |
- 1&'2

k

&- 1&'2
k

f ('k , y) dy, (1.3)

with

Ak=
?

n+1
sin

k?
n+1

, k=1, ..., n,

is exact for each polynomial f # ?2n&1 (R2).

In other words, among all the variety of quadrature formulae that use n
chords the quadrature (1.3), based on the chords that are parallel to Oy
and pass through the zeros of the Tchebycheff polynomial of second kind
Un , has a highest degree of precision.

The natural question then arises: Is (1.3) the only one (up to rotation)
with this extremal property? We gave in [1] various characterization
properties of the extremal set of chords and the associated polynomial |.
For example, a simple consequence of the extremality of (1.3) is that
| must be orthogonal on D to every polynomial from ?n&1 (R2). But as is
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known, there are many polynomials of degree n that are orthogonal to
?n&1 (R2).

In this paper, based on the results from [1], we prove the uniqueness of
the Gaussian quadrature formula (1.3). Following the same idea, we con-
struct and give a complete characterization of the Gauss�Lobatto type
quadrature formulae for the disc D that use n chords and 2 points on the
circumference �D.

We give also a general multivariate analogue of (1.3) for integration over the
unit ball Bd in Rd using integrals over the intersection of Bd with n hyperplanes.
This is exactly the type of information used in series of applications, for
example, in the computer tomography performed for the purposes of
medical research.

2. UNIQUENESS

We find it worthy to sketch first the idea of the proof. Observe that the
number n of evaluations is much smaller than the dimension of ?2n&1 (R2),
which is n(2n+1). Thus, one may hope to find sufficient number of linearly
independent polynomials in this wide class of exactness for which the data
�Ik

f does not depend on the parameter %k . Luckily, the radial polynomials
(x2+ y2)m, m=0, ..., n&1, have this property. Then, for radial polyno-
mials, the information vector (�I1

f, ..., � In
f ) does not depend on the angles

%1 , ..., %n and consequently we may choose %1= } } } =%n=0. This reduces
the general case to the case of parallel chords and the multidimensional
formula is reduced to a univariate one, which is exact for the even poly-

nomials t2m, m=0, ..., n&1. Next we use the symmetry of any extremal
formula to show that the resulted univariate quadrature is exact also for
the odd polynomials and thus for all polynomials of degree 2n&1. Then it
should be Gaussian and hence determined uniquely.

The symmetry of the node chords was established in [1]. This is
an important point for our method. That is why we cannot apply it to
non-symmetric formulae like those of Gauss�Radau type, although a
quadrature of Gauss�Radau type (that uses n line integrals and a function
value at a point from �D) can be easily constructed.

Our central result is the following theorem.

Theorem 2.1. There is a unique (up to rotation) quadrature formula of
the form

||
D

fr :
n

k=1

Ak |
Ik

f (2.1)

which is exact for all polynomials from ?2n&1 (R2).
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Proof. Assume that (2.1) is Gaussian. Then it integrates exactly the
polynomials

(x2+ y2)m, m=0, ..., n&1.

We calculate

||
D

(x2+ y2)m=|
1

&1
|

- 1&x2

&- 1&x2
(x2+ y2)m dy dx

=|
1

&1
- 1&x2 p2m (x) dx,

where p2m is an even algebraic polynomial of degree exactly 2m. On the
other hand we derive that

|
Ik

(x2+ y2)m=|
- 1&t2

k

&- 1&t2
k

(t2
k+ y2)m dy=- 1&t2

k p2m (tk),

because (x2+ y2)m is a radial polynomial and hence the line integral over
Ik is the same as the integral over the line segment in D with equation
x=tk .

Therefore we have

|
1

&1
- 1&x2 p2m (x) dx= :

n

k=1

Ak - 1&t2
k p2m (tk), m=0, ..., n&1.

Then the quadrature formula

|
1

&1
- 1&x2 f (x) dxr :

n

k=1

ak f (tk) (with ak=Ak - 1&t2
k ) (2.2)

integrates exactly all even polynomials f of degree �2n&2.
Now recall that the orthogonal polynomial | :=l1 } } } ln associated with

formula (2.1) has the property |(&x, &y)=(&1)n |(x, y) (see [1],
Lemma 8). This implies that the zero lines of | are pair-wise symmetric
and consequently

tk=&tn&k+1 , k=1, ..., n.

Let us denote by J/[1, 2, ..., n] the set of indices k for which tk=0.
Note that by Lemma 8 in [1], J{[1, 2, ..., n]. We apply the Gaussian
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quadrature formula (2.1) to the polynomials |2
k :=(l1 } } } lk&1 lk+1 } } } ln)2

and |2
n&k+1 , for k � J, and get

||
D

|2
k=Ak |

Ik

|2
k and ||

D
|2

n&k+1=An&k+1 |
In&k+1

|2
n&k+1 .

We have that

||
D

|2
k&||

D
|2

n&k+1

=&4tk ||
D

|2
k, n&k+1(x, y)(x cos %k+ y sin %k) dx dy, k � J,

where |2
k, n&k+1 :=(l1 } } } lk&1 lk+1 } } } ln&k ln&k+2 } } } ln)2 is a symmetric

polynomial, that is, |2
k, n=k+1(&x, &y)=|2

k, n&k+1(x, y). But

||
D

xq(x, y) dx dy=||
D

yq(x, y) dx dy=0 (2.3)

for every polynomial q with the property q(&x, &y)=q(x, y), and there-
fore

||
D

|2
k=||

D
|2

n&k+1 .

On the other hand, again from the symmetry of |2
k, n&k+1 and the lines Ik

and In&k+1 , we derive

|
Ik

|2
k=|

In&k+1

|2
n&k+1 ,

and hence Ak=An&k+1 , k � J. The latter is equivalent to

ak=an&k+1 , k # [1, ..., n]"J.

Thus the coefficients of the quadrature formula (2.2) that correspond to
non-zero nodes are symmetric. Then (2.2) should be exact for all odd func-
tions, and particularly for all odd polynomials of degree �2n&1. This is
clear, since for odd p we have

|
1

&1
- 1&x2 p(x) dx=0, p(0) :

k # J

ak+ :
k � J

ak p(tk)=0.
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Therefore the quadrature formula integrates exactly all algebraic polyno-
mials of degree 2n&1. Then it coincides with the Gaussian quadrature with
weight - 1&x2 in [&1, 1]. Hence t1 , ..., tn are the zeros of the Tchebycheff
polynomial of second kind Un . In particular, up to rotation, we may
assume that I1 is the line segment with equation x=t1 , t1 being
the greatest zero of Un . Then, according to Theorem 4 from [1], (2.1)
coincides with the Gaussian formula from Theorem A and the proof is
completed. K

We conclude this section with a question concerning Christoffel type
extension of the result above.

An integrable non-negative function + on D is said to be a weight func-
tion (or briefly a weight) on D if it does not vanish on a set of positive
measure on D. So far we constructed and proved the uniqueness of the
Gaussian formula with a standard constant weight +(x, y)#1. One could
state the corresponding problem for a general weight + (The extension is
due to Christoffel in the univariate case). The first task is to prove the exist-
ence of a quadrature formula of the form

||
D

+(x, y) f (x, y) dx dyr :
n

k=1

Ak |
Ik

f (x, y) ds (2.4)

with ADP as high as possible, namely the existence of a Gaussian quad-
rature formula with weight +. A weaker version of the existence problem is
to look for a formula based on the corresponding weighted line integrals

|
Ik

+(x, y) f (x, y) ds, k=1, ..., n.

Even in this form the study of the existence leads to the following interest-
ing open question:

Let + be a weight function on D. Do the functions

xk |
- 1&x2

&- 1&x2
+(x, y) yn&k dy, k=0, ..., n,

constitute a Tchebycheff system on [&1, 1]?

If so, following our method, one can derive from the Krein theorem (see
[5]) the existence of a Gaussian quadrature for weighted integrals.
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3. GAUSS�LOBATTO FORMULA

We would like to have a multidimensional analogue of the
Gauss�Lobatto formula. As such an analogue we consider quadrature of
the type

||
D

f (x, y) dx dy

rB1 f (x1 , y1)+B2 f (x2 , y2)+ :
n

k=1

Ak |
Ik

f (x, y) ds, (3.1)

where [Ik], k=1, ..., n, are n chords in D and [(x i , y i)], i=1, 2, are two
points on the unit circle [(x, y): x2+ y2=1]. A simple observation is the
fact that

ADP(3.1)<2n+2 (3.2)

for each choice of the coefficients Ak , Bi and parameters (tk , %k), (xi , yi).
To show this, we introduce (in addition to l1 , ..., ln , defined in the previous
section) the line ln+1 that passes through the points (x1 , y1) and (x2 , y2)
and consider the corresponding polynomial

| :=l1 } } } ln+1

associated with formula (3.1). Evidently |2 # ?2n+2 (R2) and ��D |2>0,
while

B1|2 (x1 , y1)+B2 |2 (x2 , y2)+ :
n

k=1

Ak |
Ik

|2 (x, y) ds=0.

This proves (3.2).
We call a formula of type (3.1) with ADP=2n+1 a Gauss�Lobatto

quadrature formula.
Along with the associated polynomial |, defined as above, we introduce

also the polynomials

|k=l1 } } } lk&1 lk+1 } } } ln+1 , k=1, ..., n+1.

The formulae of maximal ADP have the following properties.

Lemma 3.1. Let (3.1) be a Gauss�Lobatto quadrature formula and let |
be its corresponding polynomial. Then the following holds:

29UNIQUENESS OF THE GAUSSIAN QUADRATURE



(a) The polynomial | is orthogonal to every Q # ?n (R2) on D and

|(&x, &y)=(&1)n+1 |(x, y). (3.3)

(b) The polynomial |n+1 is orthogonal to every Q # ?n&1 (R2) on D
with weight (1&x2& y2) and

|n+1 (&x, &y)=(&1)n |n+1 (x, y). (3.4)

(c) (x1 , y1)=&(x2 , y2) and B1=B2 .

Proof. (a) The polynomial |Q belongs to ?2n+1 (R2) if Q # ?n (R)2.
Since (3.1) is a Gauss�Lobatto quadrature, we have

||
D

|Q dx dy=B1 |(x1 , y1) Q(x1 , y1)+B2|(x2 , y2) Q(x2 , y2)

+ :
n

k=1

Ak |
Ik

|Q=0.

Because of the orthogonality of | and the fact that D is a central sym-
metric domain, it follows from a known general result (see [7, p. 164]) that
| has the property (3.3).

(b) Consider |n+1 # ?n (R2) and the weight (1&x2& y2). Let us
apply (3.1) to the polynomial

(1&x2& y2) |n+1Q # ?2n+1 (R2), Q # ?n&1 (R2).

As a result we get

||
D

(1&x2& y2) |n+1Q dx dy=0

for any polynomial Q of degree �n&1 in R2. Hence |n+1 is orthogonal
to ?n&1 (R2) with a central symmetric weight (1&x2& y2). The domain D
is central symmetric too and therefore (see [7]) |n+1 has the property
(3.4).

(c) From (3.3), (3.4), and the fact that |=|n+1 ln+1 it follows that
ln+1 passes through the origin. That is, (x1 , y1)=&(x2 , y2). Assume now
that (x1 , y1) lies on some of the lines Ik , k<n+1. Then, using (3.3) and
the property mentioned above, we derive that |n+1 (x1 , y1)=|n+1 (x2 , y2)
=0, which yields that the approximation assigned to ��D |2

n+1 is zero.
Thus the formula is not exact for |2

n+1 from ?2n (R2), a contradiction.
Therefore none of these two points belongs to any of the lines Ik , k<n+1.
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Next, apply (3.1) to the polynomials (x&x1) |2
n+1 and (x&x2) |2

n+1 from
?2n+1 (R2). We obtain that

B2 (x2&x1) |2
n+1(x2 , y2)=||

D
(x&x1) |2

n+1 dx dy,

B1 (x1&x2) |2
n+1(x1 , y1)=||

D
(x&x2) |2

n+1 dx dy.

But, as mentioned in (2.3),

||
D

x|2
n+1 dx dy=0.

In addition, |2
n+1(x1 , y1)=|2

n+1(&x1 , &y1)=|2
n+1(x2 , y2). Since the

points (xi , yi), i=1, 2 are not on any of the lines Ik , k<n+1, we have
B1=B2 and the proof is completed. K

Now we shall construct a quadrature with a maximal ADP in the set of
bivariate polynomials. The construction is based on the classical
Gauss�Lobatto formula with weight - 1&x2, namely,

|
1

&1
- 1&x2 p(x) dxrbp(&1)+bp(1)+ :

n

j=1

aj p(xj), (3.5)

which is exact for all polynomials p # ?2n+1 (R). It is known that &1, x1 , ...,
xn , 1 are the zeroes of Un+2&Un . Also, it can be shown that x1 , ..., xn are
the zeroes of U$n+1 . Then the following theorem holds.

Theorem 3.1. Let [aj] and b be the coefficients of (3.5) and let [xj] be
the zeros of U$n+1 . Then the quadrature formula

||
D

f (x, y) dx dyr2bf (&1, 0)+2bf (1, 0)

+ :
n

j=1

aj

- 1&x2
j
|

- 1&xj
2

&- 1&xj
2

f (xj , y) dy, (3.6)

is exact for all polynomials f # ?2n+1 (R2).

Proof. Let f # ?2n+1 (R2). Then it can be written in the form

f (x, y)= :
2n+1

k=0

ck (x) yk
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with certain polynomials ck # ?2n&k+1 (R). Then

||
D

f (x, y) dx dy= :
n

s=0

2
2s+1 |

1

&1
- 1&x2 c2s (x)(1&x2)s dx.

Apply now formula (3.5) to c2s (x)(1&x2)s # ?2n+1 (R). We obtain

||
D

f (x, y) dx dy

=b } :
n

s=0

2
2s+1

c2s (&1)(1&(&1)2)s

+b } :
n

s=0

2
2s+1

c2s (1)(1&(1)2)s

+ :
n

j=1

aj :
n

s=0

2
2s+1

c2s (xj)(1&x2
j )s

=2bc0 (&1)+2bc0 (1)+ :
n

j=1

aj

- 1&x2
j
|

- 1&xj
2

&- 1&xj
2

f (x j , y) dy

=2bf (&1, 0)+2bf (1, 0)+ :
n

j=1

aj

- 1&x2
j
|

- 1&xj
2

&- 1&xj
2

f (xj , y) dy,

and the proof is completed. K

Now we are prepared to prove the uniqueness of the constructed for-
mula.

Theorem 3.2. There is a unique (up to rotation) quadrature formula of
type (3.1) with ADP=2n+1.

Proof. Let (3.1) be a Gauss�Lobatto quadrature formula. As in the
proof of Theorem 2.1, we consider the radial polynomials

(x2+ y2)m, m=0, ..., n,

and use (3.1) to calculate the corresponding integral. We obtain that

|
1

&1
- 1&x2 p2m (x) dx

=B1+B2+ :
n

k=1

Ak - 1&t2
k p2m (tk), m=0, ..., n,
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where p2m # ?2m (R) is an even algebraic polynomial, defined via the
equality

- 1&x2 p2m (x)=|
- 1&x2

&- 1&x2

(x2+ y2)m dy.

Since p2m (&1)= p2m (1)=2, the above obtained equalities show that the
induced univariate quadrature formula

|
1

&1
- 1&x2 f (x) dxrb1 f (&1)+b2 f (1)+ :

n

k=1

ak f (tk), (3.7)

with bi=Bi �2 and ak=Ak - 1&t2
k , integrates exactly all even polynomials

of degree �2n.
Note that by Lemma 3.1, part (b), the polynomial |n+1 has property

(3.4) and therefore its zero lines are pair-wise symmetric, that is,

tk=&tn&k+1 , k=1, ..., n.

As in the proof of Theorem 2.1 we introduce the set J/[1, ..., n] of indices
[k] for which tk=0. If J{[1, ..., n], we apply (3.1) to |2

k , k � J, k{n+1,
and |2

n&k+1 . Following the proof of Theorem 2.1 and using property (3.3)
of |, we derive that

ak=an&k+1 , k � J.

Also, from Lemma 3.1, part (c), we have b1=b2 . Then (3.7) should be
exact for all odd functions, and particularly for all odd polynomials of
degree �2n+1. This is so, because for odd f we have

|
1

&1
- 1&x2 f (x) dx=0,

b1 f (&1)+b2 f (1)+ f (0) :
k # J

ak+ :
k � J

ak f (tk)=0.

If J=[1, ..., n], then the second sum disappears and the statement still
holds. Hence (3.7) coincides with the Gauss�Lobatto quadrature with
weight - 1&x2 in [&1, 1]. Therefore the parameters t1 , ..., tn of any
extremal quadrature formula must coincide with the nodes of the
univariate Gauss�Lobatto quadrature formula (3.5).

It remains to show that the chords I1 , ..., In are parallel. Let x1 be the
greatest zero of U$n+1 . Without loss of generality we can assume that the
line I1 has equation x=x1 . From Lemma 3.1, part (b), we know that |n+1

is orthogonal to ?n&1 (R2) in D with weight (1&x2& y2). Now following
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the scheme outlined in [12], page 70, we construct the following
orthogonal basis for ?n (R2), corresponding to the weight (1&x2& y2),

[(U$m+1 (x)) ( j) Vj (x, y)]m, n
j=0, m=0 .

Here

Vj (x, y)={
( y2+x2q2

2s, 1&q2
2s, 1) } } } ( y2+x2q2

2s, s&q2
2s, s),

if j=2s,
y( y2+x2q2

2s+1, 1&q2
2s+1, 1) } } } ( y2+x2q2

2s+1, s&q2
2s+1, s),

if j=2s+1,

with qj, l , l=1, ..., [ j�2], being the positive zeros of the j th orthogonal
polynomial on [&1, 1] with weight (1&x2). Then we have

|n+1 (x, y)= :
n+1

k=1

ck U (k)
n+1(x) Vk&1 (x, y)

with certain constant coefficients [ck]. But |n+1 (x1 , y)=0 for every y.
Then, taking into account that [Vk&1 (x1 , y)]n+1

1 are linearly independent
polynomials, after comparison of the coefficients we conclude that

ckU (k)
n+1(x1)=0, k=1, ..., n+1.

Since x1 is the greatest zero of U$n+1 , all zeroes of U (k)
n+1 , k>1, belong to

the interval (&1, x1). Then ck=0, k=2, ..., n+1, and therefore

|n+1 (x, y)=c1U$n+1 (x), c1 {0.

From here and part (c) of Lemma 3.1 it follows that (3.1) has the form

||
D

f (x, y) dx dyrBf (x1 , y1)+Bf (&x1 , &y1)

+ :
n

j=1

Aj |
- 1&xj

2

&- 1&xj
2

f (xj , y) dy.

Note that the line ln+1 passes through the origin. Then | can be written
as

|(x, y)=(;x+#y) U$n+1 (x)

with some real coefficients ; and #. We use the fact that (see [1])

[U ( j)
m (x) Wj (x, y)]m, n+1

j=0, m=0
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is an orthogonal basis for ?n+1 (R2) with weight +(x)=1. Here

Wj (x, y)={
( y2+x2p2

2s, 1& p2
2s, 1) } } } ( y2+x2p2

2s, s& p2
2s, s),

if j=2s,
y( y2+x2p2

2s+1, 1& p2
2s+1, 1) } } } ( y2+x2p2

2s+1, s& p2
2s+1, s),

if j=2s+1,

with pj, l , l=1, ..., [ j�2], the positive zeros of the j th Legendre polynomial.
By part (a) of Lemma 3.1, | is orthogonal to ?n (R2) in D. Therefore we
have the representation

(;x+#y) U$n+1 (x)= :
n+1

k=0

ck U (k)
n+1(x) Wk (x, y).

After we compare the coefficients in front of the powers of y, we get that

c2 = } } } =cn+1=0, #U$n+1 (x)=c1U$n+1 (x),

;xU$n+1 (x)=c0Un+1 (x).

It follows from the last equation that ;=c0=0. Hence |(x, y)=
#yU$n+1 (x) and this gives (x1 , y1)=(&1, 0). Therefore all nodes and
chords of (3.1) coincide with those of formula (3.5) given in Theorem 3.1.
Then the equalities

B=2b, Ak=
ak

- 1&x2
k

,

follow and the proof is completed. K

Remark 3.1. We proved (see Theorem A) that (1.3) is exact for all
polynomials from ?2n&1 (R2). Let us go further and represent the line
integrals over Ik by the corresponding one dimensional Gaussian formulae

|
sin(k?�(n+1))

&sin(k?�(n+1))
f \cos

k?
n+1

, y+ dyr :
n

j=1

Bj, k f \cos
k?

n+1
, yj, k+

that are exact for all polynomials in ?2n&1 (R). Then we arrive at the
quadrature

||
D

f (x, y) dx dy

r
?

n+1
:
n

k=1

sin
k?

n+1
:
n

j=1

Bj, k f \cos
k?

n+1
, yj, k+ (3.8)
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which uses n2 point evaluations and has ADP�2n&1. There was a con-
siderable effort over the years to find formulae with minimal number N*(n)
of nodes that integrate exactly all polynomials from ?2n&1 (R2). These for-
mulae are called minimal. Particular minimal ones have been constructed
for polynomials of a certain small degree (see, for example, [7]). It is
shown in [6], that for centrally symmetric weight functions and domains,
N*(n)�n(n+1)�2+[n�2]. On the other hand, one can always find an
interpolation set of n(2n+1) nodes and construct the interpolatory type
quadrature formula which will have an ADP=2n2+n=: N0 (n). Thus any
formula that uses less than N0 (n) nodes is of interest. Note that (3.8) has
roughly twice as many nodes as the corresponding minimal quadrature and
twice less than the interpolatory one, which is a quite good property.

One may proceed the same way starting from the Gauss�Lobatto for-
mula (3.6), and derive a quadrature with algebraic degree of precision at
least 2n&1 that uses n2&2n+3 nodes (which is a smaller number than in
the previous case). Moreover, the coefficients and the nodes can be given
explicitly.

4. MULTIVARIATE EXTENSION

For every x=(x1 , ..., xd) from Rd we set

&x& :=(x2
1+ } } } +x2

d)1�2,

Bd :=[x # Rd : &x&�1].

Let Sd&1 be the unit sphere in Rd, that is,

Sd&1=�B :=[x # Rd : &x&=1].

With every vector ! # Sd&1, !=(!1 , ..., !d), !d�0, and a number t we
associate the hyperplane ;(!, t) that is perpendicular to ! and passes
through the point t!. We consider also the corresponding linear polynomial

;(!, t)(x) :=x } !&t, (x } ! :=x1!1+ } } } +xd!d).

Recall that the Radon projection of a scalar valued function f on Bd is
given by

R( f; !, t) :=|
;(!, t) & B d

f, &1�t�1.

Usually R( f; !, t) is considered as a parameterized by ! family of
univariate functions and is called Radon transform of f. As is known, the
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function f can be reconstructed from its Radon transform (see [9] for
further results and details).

In this section we consider the problem of recovery of the weighted
integral of an algebraic polynomial f on Bd, using minimal number of its
Radon projections. In other words, for a given weight +(x) on Bd we study
quadrature formulae of the form

|
B d

+(x) f (x) dxr :
n

k=1

Ak R( f; !k , tk) (4.1)

of highest ADP. We allow some of the tk 's to be equal to 1. Then we inter-
pret R( f; !k , tk) as f (!k). Such an interpretation is justified by the con-
tinuity argument

lim
tk � 1

1
Vold&1[;(!k , tk) & Bd] |

;(!k , tk)
f= f (!k).

It can be easily derived that

ADP(4.1)<n+n0 ,

where n0 is the number of tk 's for which |tk |<1. Indeed, let us apply (4.1)
to the polynomial

h(x) := `
|tk| <1

;2 (!k , tk)(x) `
|tk|=1

;(!k , tk)(x).

Note that for |tk |=1 the hyperplane ;(!k , tk) is tangent to Bd at ! and
hence ;(!k , tk)(x) does not change sign for x # Bd. Then the weighted
integral of h on Bd is non-zero, while the approximate value given by (4.1)
is zero. Since h is of degree n+n0 , our claim is proved.

Further we use projections determined by the vector !=(1, 0, ..., 0). In
this case we omit ! and write simply

R( f; t)=|
B(t)

f, &1�t�1,

where B(t) is the intersection of Bd and the hyperplane in Rd which is per-
pendicular to the Ox1 axis and passes through (t, 0, ..., 0). The next
auxiliary lemma shows that the Radon projection R( f; } ) of a polynomial
f from ?n (Rd) is a weighted univariate polynomial.

Lemma 4.1. For each f # ?n (Rd) there is a polynomial p from ?n (R) such
that

R( f; t)=(1&t2) (d&1)�2 p(t). (4.2)
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Furthermore,

p(&1)=Vol Bd&1f (&1, 0, ..., 0),

p(1)=Vol Bd&1f (1, 0, ..., 0). (4.3)

Proof. Notice that for d=2 this lemma was proved already in [1] and
in the previous sections.

It is sufficient to show (4.2) for monomials

xm� =xm1
1 } } } xmd

d , m� :=(m1 , ..., md).

Let m� (2, d ) :=(m2 , ..., md). We have

R(xm� ; t)=|
B(t)

tm1xm2
2 } } } xmd

d dx2 } } } dxd

=tm1 |
[y # R d&1: &y&�r]

ym� (2, d) dy

with r :=- 1&t2. Clearly the last integral is zero if at least one mj ,
j=2, ..., d, is odd and then p(t)#0 is the wanted polynomial. Let us
assume now that all mj , j=2, ..., d, are even. After the change of variables
yk=rzk , k=1, ..., d&1, we get

R(xm� ; t)=tm1r |m� (2, d )|rd&1 |
B d&1

zm� (2, d ) dz

=C(1&t2) (d&1)�2 tm1 (1&t2) |m� (2, d )|�2,

where C=�B d&1 zm� (2, d ) dz is a constant and |m� (2, d )| :=m2+ } } } +md . The
relation is proved. To verify (4.3) we just observe that

R( f; t)=|
B(t)

f=rd&1 |
B d&1

f (t, rz1 , ..., rzd&1) dz=rd&1p(t).

Thus

p(t)=
Vol Bd&1

Vold&1 B(t) |
B(t)

f, (4.4)

and clearly

p(1)= lim
t � 1

p(t)=Vol Bd&1 lim
t � 1

1
Vold&1 B(t) |

B(t)
f (x) dx

=Vol Bd&1 f (1, 0, ..., 0). K
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We are going to prove the existence of Gaussian quadrature formulae
on Bd in the case of a ridge weight function. Recall that a function G on
Rd is called a ridge function if G(x)= g(! } x) for some ! # Sd&1 and a
univariate function g.

Our proof is constructive and relies on the following theorem which
reveals a one-to-one correspondence between the univariate quadratures on
[&1, 1] and a class of quadrature formulae on Bd.

Theorem 4.1. Assume that + is an arbitrary weight function on [&1, 1]
and d is a natural number. The quadrature formula

|
1

&1
+(t)(1&t2) (d&1)�2 p(t) dtr :

n

k=1

ak p(`k), (4.5)

where &1�`1< } } } <`n�1 integrates exactly all polynomials from ?N(R)
if and only if the formula

|
B d

+(x1) f (x) dxr :
n

k=1

ak

(1&`2
k) (d&1)�2 |

B(`k)
f (x) dx (4.6)

is exact for all elements in ?N(Rd).
If `1=&1 (or `n=1), the corresponding term in (4.6) has to be inter-

preted as a1 Vol Bd&1 f (&1, 0, ..., 0) (or an Vol Bd&1 f (1, 0, ..., 0)).

Proof. Note that (4.6) may be written in the following equivalent form

|
Bd

+(x1) f (x) dxr :
n

k=1

ak
Vol Bd&1

Vold&1 B(`k) |
B(`k)

f (x) dx,

which covers the cases when some of the `k 's are endpoints of the interval
[&1, 1]. Now the proof of the theorem is immediate. Let f # ?N(Rd) and
(4.5) be exact for all polynomials in ?N(R). By Lemma 4.1 we have

|
B d

+(x1) f (x) dx=|
1

&1
+(t) R( f; t) dt=|

1

&1
+(t)(1&t2)(d&1)�2 p(t) dt

= :
n

k=1

ak p(`k)

and by (4.4) we arrive at the desired equality.
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Conversely, if (4.6) is exact for all f # ?N(Rd), then it integrates exactly
the ridge monomials x l

1 , l=0, ..., N. This leads to the fact that (4.5) is exact
for every polynomial p(t)=tl, l=0, ..., N, and thus for every p # ?N(R). K

Theorem 4.1 shows how a univariate quadrature formula generates its
multivariate counterpart. In particular, if (4.5) is Gaussian, then (4.6) is
also Gaussian. Thus the existence problem for a quadrature formulae of
type (4.1) of maximal ADP is settled in the case of a ridge weight +.

Next we prove the uniqueness in the case +(x)=1. We shall follow the
idea already demonstrated in Sections 2 and 3. We have used there a cer-
tain representation (given in [12], p. 70) of orthogonal polynomials of two
variables. The next proposition, which provides a similar representation in
the general d-variate case, d�2, was kindly communicated to us by Yuan
Xu. We present below his elegant proof in a separate lemma.

Consider the weight +* (x) :=(1&&x&2)*&1�2 on Bd. Let V d
n(+*) denote

the space of orthogonal polynomials of degree n with respect to +* on Bd.
For each k=0, ..., n, let [Qk

:]n
|:|=k , : # N d&1

0 :=[:=(:1 , ..., :d&1), :i�0,
:i # N], be an orthonormal basis for V d&1

n (+*). For x=(x1 , y) # Bd, define

Pn
:, k(x) :=C (k+*+(d&1)�2)

n&k (x1)(1&x2
1)k�2 Qk

: \ y

- 1&x2
1
+ ,

|:|=k, : # N d&1
0 ,

where C (;)
n denotes the orthogonal Gegenbauer polynomial of degree n,

that is,

|
1

&1
C (;)

n (t) C (;)
m (t)(1&t2);&1�2 dt=$nm ,

with $nm being the Kronecker symbol.

Lemma 4.2. The set [Pn
:, k(x): |:|=k, : # N d&1

0 , 0�k�n] forms an
orthonormal basis of V d

n(+*)

Proof. After a change of variables we get

|
B d

f (x) +* (x) dx

=|
1

&1
|

B d&1
f (x1 , - 1&x2

1 y)(1&&y&2)*&1�2 dy(1&x2
1)*+(d&2)�2 dx1 .
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Thus, we have

|
B d

Pn
:, k(x) Pm

;, j(x) +* (x) dx

=|
1

&1
C k+*+(d&1)�2

n&k (x1)

_C j+*+(d&1)�2
m& j (x1)(1&x2

1) (k+ j)�2+*+(d&2)�2 dx1

_|
B d&1

Qk
:(y) Q j

;(y)(1&&y&2)*&1�2 dy

=$n, m$k, j $:, ; .

This proves the orthogonality. Moreover, we have

:
n

k=0

*[: # N d&1
0 : |:|=k]= :

n

k=0
\k+d&2

k +=\n+d&1
n +

=dim V d
n(+*)

and thus the polynomials constitute a basis in V d
n(+*). The proof is com-

pleted. K

Now we are ready to prove the uniqueness.

Theorem 4.2. For every natural n and dimension d there is a unique (up
to rotation) quadrature formula of the form (4.1) with +(x)#1 which
integrates exactly all algebraic polynomials from ?2n&1 (Rd).

Proof. Assume that (4.1) with +(x)#1 is a quadrature formula of
ADP=2n&1. Let |(x) :=;(!1 , t1)(x) } } } ;(!n , tn)(x) be the associated
with this formula polynomial. Then, clearly,

|
B d

|q= :
n

k=1

Ak |
;(!k , tk) & Bd

|q=0

for every polynomial q from ?n&1 (Rd). Thus

|(x) is orthogonal to ?n&1 (Rd).

Then, since Bd is a symmetric domain and +(x)#1 is a symmetric weight,
a general result from the theory of orthogonal polynomials (see, for example,
[12]) implies that | is centrally symmetric. Therefore, if ;(!k , tk)(x) is a
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factor of |, then ;(!k , &tk)(x) is also a factor. As a consequence, we get
as in Section 2 that

tk=&tn&k+1 , Ak=An&k+1 , (4.7)

for all k=1, ..., n for which tk {0. Next the proof repeats the arguments
presented in Section 2: If (4.1) integrates exactly all polynomials of degree
2n&1, then it is exact, in particular, for the even symmetric polynomials

(x2
1+ } } } +x2

d)m, m=0, ..., n&1.

This leads to the fact that the associated univariate quadrature formula
(with ak �(1&`2

k) (d&1)�2=Ak)

|
1

&1
(1&t2) (d&1)�2 p(t) dtr :

n

k=1

ak p(tk) (4.8)

is exact for all even polynomials p(t)=t2m, m=0, ..., n&1. In addition,
(4.7) implies that the quadrature (4.8) is exact also for all odd polynomials
(since the nodes [tk] and the coefficients [ak] are symmetric). There-
fore (4.8) has ADP equal to 2n&1. Then it coincides with the Gauss
quadrature formula corresponding to the weight (1&t2)(d&1)�2 and thus,
the parameters [tk] are determined uniquely. They are the zeros of the
orthogonal Gegenbauer polynomial C (d�2)

n .
It remains only to show that the directions [!k]n

k=1 are equal. To do this
we proceed as in the proof of Theorem 4 from [1].

Assume that P is an orthogonal polynomial of degree n and

P(x)=(x1&a) P1 (y), x=(x1 , y) # Rd,

where a is the largest zero of C (*+(d&1)�2)
n . We shall show that

P(x)=const } C (*+(d&1)�2)
n (x1).

Indeed, since P # V d
n(+*), we can write

P(x)= :
n

k=0

:
|:|=k

a:, k C (k+*+(d&1)�2)
n&k (x1)(1&x2

1)k�2 Qk
: \ y

- 1&x2
1
+ .

The polynomial P vanishes on the line x1=a. Therefore

0=P(a, y)= :
n

k=0

:
|:| =k

a:, kC (k+*+(d&1)�2)
n&k (a)(1&a2)k�2 Qk

: \ y

- 1&a2+ .
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Since [Qk
:]n

k=0, |:|=k, are linearly independent and, in fact (by Lemma 4.2),
form a basis for ?n (Rd&1), we conclude that

a:, kC (k+*+(d&1)�2)
n&k (a)(1&a2)k�2=0, |:|=k, k=0, ..., n.

Since

C (k+*+(d&1)�2)
n&k (t)=const } \ d

dt+
k

C (*+(d&1)�2)
n (t),

it follows from the interlacing property of the zeros of the Gegenbauer
polynomials that

C (k+*+(d&1)�2)
n&k (a){0, 1�k�n.

Hence a:, k=0, for |:|=k, k=1, ..., n. Therefore

P(x)=a0, 0C (*+(d&1)�2)
n (x1).

This completes the proof of our claim. It yields that the directions [!k] of
any orthogonal polynomial |, with parameters [tk] coinciding with the
zeros of the Gegenbauer polynomials, should be equal. Thus | is uniquely
determined up to rotation. The uniqueness of the Gaussian quadrature
formula (4.1) with a weight function +(x)#1 is proved. K
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